wIRA 處理慢性傷口

Therapy of chronic wounds with wIRA

The central portion of chronic wounds is often hypoxic and relatively hypothermic, representing a deficient en-ergy supply of the tissue, which impedes wound healing or even makes it impossible. wIRA increases temperature, oxygen partial pressure and perfusion of the tissue. These three factors are decisive for a sufficient supply of tissue with energy and oxygen and consequently for wound healing, especially in chronic wounds, and infection de-fense. wIRA can enable wound healing in non-healing chronic wounds [3].

wIRA for chronic venous stasis ulcers of
the lower legs (Study in Basel)

In a prospective, randomized, controlled study of 40 pa-tients with chronic venous stasis ulcers of the lower legs, irradiation with wIRA and visible light VIS 30 minutes three times per week over 6 weeks accelerated the wound healing process (on average 18 versus 42 days until complete wound closure, residual ulcer area after 42 days 0.4 cm² versus 2.8 cm²) and led to a reduction of the required dose of pain medication in comparison to the control group of patients treated with the same standard care (wound cleansing, wound dressing with antibacterial gauze, and compression therapy) without concomitant irradiation [3], [53].

wIRA for chronic venous stasis ulcers of the lower legs (Study of the University of
Tromsø/Norway and the Hospital in Hillerød/Denmark)

Another prospective study of 10 patients with non-healing chronic venous stasis ulcers of the lower legs included extensive thermographic investigation. Therapy with wIRA(+VIS) resulted in a complete or almost complete wound healing in 7 patients and a marked reduction of the ulcer size in a further 2 of the 10 patients, a clear reduction of pain and required dose of pain medication (e.g. from 15 to 0 pain tablets per day), and a normaliza-tion of the thermographic image (before the beginning of the therapy, a hyperthermic rim of the ulcer together with a relative hypothermic ulcer base and a temperature dif-ference of up to 4.5°C was typically seen).
In one patient the therapy of an ulcer of one leg was performed with the fully active radiator (wIRA(+VIS)), while the therapy of an ulcer of the other leg was carried out with a control group radiator (only VIS without wIRA), showing a clear difference in favor of the wIRA treatment. All variables assessed with visual analogue scales – effect of the irradiation (assessed by patient and by clinical in-vestigator), feeling of the wound area (assessed by pa-tient), wound healing (assessed by clinical investigator), and cosmetic state (assessed by patient and by clinical investigator) – improved remarkably during the period of irradiation treatment, representing an increased quality of life.

Within the group of 6 patients with chronic venous stasis ulcers of the lower legs without any concomitant problems (i.e. without arterial insufficiency, without being a smoker and without lacking compression therapy) all 6 ulcers healed completely or almost completely (96–100% reduc-tion of ulcer size) [3], [23].
The original publication [23] provides 10 appendices with detailed information about each patient und in addition two thermographic video sequences.
An example of the healing process in a chronic venous stasis ulcer of the lower leg under therapy with wIRA is presented in Figure 13.

Figure 13: Example of the healing process of a chronic venous stasis ulcer of the lower leg under therapy with wIRA
(Study Tromsø/Hillerød)
(28 times 30 minutes irradiation with water-filtered infrared-A (wIRA) and visible light (VIS) within 52 days = approximately
7 weeks) with normal view, thermographic image, and temperature profile across the ulcer, in each case to the left before therapy and to the right after completion of the course of therapy. The arrow in the thermographic image – taken after completion of the course of therapy – points to the place where the wound has been. Diameter of the red circles: 16 mm. (Study of the University of Tromsø/Norway and the Hospital in Hillerød/Denmark) (adapted from [3], [4], [23])

wIRA for chronic venous stasis ulcers of the lower legs (Study of the University of
Freiburg, Department of Dermatology)

In a prospective, randomized, controlled, blinded study, 51 patients with non-healing chronic venous stasis ulcers of the lower legs were treated with compression therapy, wound cleansing, non-adhesive wound dressings and 30 minutes irradiation five times per week over 9 weeks. A preliminary analysis of this study has shown advanced wound healing, improved granulation and in the later phase of treatment a decrease of the bacterial burden in the group with wIRA(+VIS) compared to a control group with VIS only [3].

wIRA for chronic venous stasis ulcers of the lower legs (Example)

An additional example is presented in Figure 14.

Figure 14: Example of the healing process of a chronic venous stasis ulcer of the lower leg under therapy with wIRA
88 year-old woman with an infected (lightly malodorous) crustaceous ulcer (of the right distal medial lower leg), which had persisted for 13 months and had increased despite conservative dermatological therapy including local antisepsis, systemic antibiotic, and non-adhesive wound dressing up to 10 cm in diameter. Chronic venous insufficiency with marked stasis-related edemas of the lower legs and extensive stasis dermatitis, diabetes mellitus type II (orally treated), slightly overweight, and decreased amount of daily motion. Under irradiation with wIRA(+VIS) 30 minutes once daily, compression therapy, local antisepsis, non-adhesive wound dressing and the possibility of ending the systemic antibiotic therapy, a complete wound closure was achieved within 4½ months: initial findings, result after 3½ months, result after 4½ months (healed) (adapted from [3], [4])

Other wound-related indications of wIRA

Some case reports have demonstrated that wIRA can even be used for mixed arterial-venous ulcers or arterial ulcers, if an appropriately low irradiation intensity is chosen and if irradiation is monitored carefully [3]. wIRA can be used for decubital ulcers both as a preven-tive and as a therapeutic measure [3].
wIRA can also improve the resorption of topically applied substances [54], [55], [56] in wounds [3].

Endogenous PDT-like effect of wIRA

An irradiation with VIS and wIRA presumably acts with endogenous protoporphyrin IX (or protoporphyrin IX of bacteria) in a manner similar to a mild photodynamic therapy (endogenous PDT-like effect). This could lead to mproved cell regeneration and wound healing and to antibacterial effects [3], [57].

Perspectives for wIRA for the improvement of healing of chronic wounds

In conclusion, these results indicate that wIRA can gener-ally be recommended for use in the treatment of chronic wounds [3].

References

1. Hoffmann G. Principles and working mechanisms of water-filtered infrared-A (wIRA) in relation to wound healing [review]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc54. Online available from: http://www.egms.de/pdf/journals/dgkh/2007-
2/dgkh000087.pdf (PDF) and http://www.egms.de/en/journals/dgkh/2007-2/dgkh000087.shtml (shtml).

2. Hartel M, Illing P, Mercer JB, Lademann J, Daeschlein G, Hoffmann G. Therapy of acute wounds with water-filtered infrared-A (wIRA) [review]. GMS Krankenhaushyg Interdiszip.2007;2(2):Doc53. Online available from:http://www.egms.de/pdf/journals/dgkh/2007-2/dgkh000086.pdf (PDF) and http://www.egms.de/en/journals/dgkh/2007-2/dgkh000086.shtml (shtml).

3. von Felbert V, Schumann H, Mercer JB, Strasser W, Daeschlein G, Hoffmann G. Therapy of chronic wounds with water-filtered infrared-A (wIRA) [review]. GMS Krankenhaushyg Interdiszip. 2007;2(2):Doc52. Online available from:
http://www.egms.de/pdf/journals/dgkh/2008-2/dgkh000085.pdf (PDF) and http://www.egms.de/en/journals/dgkh/2008-2/dgkh000085.shtml (shtml).

4. Hoffmann G. Wassergefiltertes Infrarot A (wIRA) zur Verbesserung der Wundheilung [Übersichtsarbeit]. [Water-filtered infrared A (wIRA) for the improvement of wound healing [review]]. GMS Krankenhaushyg Interdiszip. 2006;1(1):Doc20. Online available from: http://www.egms.de/pdf/journals/dgkh/2006-1/dgkh000020.pdf (PDF) and http://www.egms.de/en/journals/dgkh/2006-1/dgkh000020.shtml (shtml).

5. Hoffmann G. Wassergefiltertes Infrarot A (wIRA) zur Verbesserung der Wundheilung bei akuten und chronischen Wunden [Water-filtered Infrared-A (wIRA) for the improvement of wound healing of acute and chronic wounds]. Wundmanagement. 2008;2:72-
80. Also available online from: http://publikationen.ub.uni-frankfurt.de/volltexte/2008/5429/
6. Hoffmann G. Klinische Anwendungen von wassergefiltertem Infrarot A (wIRA) [Clinical applications of water-filtered infrared-A (wIRA)]. In: Kaase H, Serick F, Hrsg. Sechstes Symposium “Licht und Gesundheit” [Sixth symposium “Light and health”]. Eine Sondertagung der Technischen Universität Berlin und der Deutschen Gesellschaft für Photobiologie mit der Deutschen Akademie für Photobiologie und Phototechnologie und der Deutschen Lichttechnischen Gesellschaft, Berlin,
13./14.03.2008. Berlin; 2008. S. 130-46. ISBN: 3-9807635-0-
3. Also available online from: http://publikationen.ub.uni-frankfurt.de/volltexte/2008/5484/ (online version includes English and German abstract).
7. Fuchs SM, Fluhr JW, Bankova L, Tittelbach J, Hoffmann G, Elsner
P. Photodynamic therapy (PDT) and waterfiltered infrared A (wIRA) in patients with recalcitrant common hand and foot warts. Ger Med Sci. 2004;2:Doc08. Online available from:
http://www.egms.de/pdf/gms/2004-2/000018.pdf (PDF) and http://www.egms.de/en/gms/2004-2/000018.shtml (shtml).
8. Cobarg CC. Physikalische Grundlagen der wassergefilterten Infrarot-A-Strahlung [Principles of the physical properties of water-filtered infrared-A radiation]. In: Vaupel P, Krüger W, Hrsg. Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung
[Thermal therapy with water-filtered infrared-A radiation]. Grundlagen und Anwendungsmöglichkeiten [The fundamentals and applications]. 2. Aufl. Stuttgart: Hippokrates; 1995.
S. 19-28.

9. Rzeznik J. Die Technik zur loko-regionalen Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung [The technique of loco-regional thermal therapy with water-filtered infrared-A radiation]. In: Vaupel P, Krüger W, Hrsg. Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung [Thermal therapy with water-filtered infrared-A radiation]. Grundlagen und Anwendungsmöglichkeiten [The fundamentals and applications]. 2. Aufl. Stuttgart: Hippokrates; 1995. S. 29-46.
10. Albrecht-Buehler G. Surface extensions of 3T3 cells towards distant infrared light sources. J Cell Biol. 1991;114(3):493-502. DOI: 10.1083/jcb.114.3.493
11. Albrecht-Buehler G. Cellular infrared detector appears to be contained in the centrosome. Cell Motil Cytoskeleton.
1994;27(3):262-71. DOI: 10.1002/cm.970270307
12. Albrecht-Buehler G. A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering. Proc Natl Acad Sci U S A. 2005;102(14):5050-5. Epub 2005 Mar 24. DOI: 10.1073/pnas.0407763102
13. Ehrlicher A, Betz T, Stuhrmann B, Koch D, Milner V, Raizen MG, Käs J. Guiding neuronal growth with light. Proc Natl Acad Sci USA. 2002;99(25):16024-8. DOI: 10.1073/pnas.252631899
14. Karu TI, Pyatibrat LV, Kalendo GS. Cell attachment to extracellular matrices is modulated by pulsed radiation at 820 nm and chemicals that modify the activity of enzymes in the plasma membrane. Lasers Surg Med. 2001;29(3):274-81. DOI: 10.1002/lsm.1119
15. Karu TI, Pyatibrat LV, Kalendo GS. Donors of NO and pulsed radiation at lambda = 820 nm exert effects on cell attachment to extracellular matrices. Toxicol Lett. 2001;121(1):57-61. DOI: 10.1016/S0378-4274(01)00315-0
16. Karu TI, Pyatibrat LV, Kalendo GS. Cell attachment modulation by radiation from a pulsed light diode (lambda = 820 nm) and various chemicals. Lasers Surg Med. 2001;28(3):227-36. DOI: 10.1002/lsm.1043
17. Chow RT, Heller GZ, Barnsley L. The effect of 300 mW, 830 nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain. 2006;124(1-2):201-10. Epub 2006 Jun
27. DOI: 10.1016/j.pain.2006.05.018
18. Gebbers N, Hirt-Burri N, Scaletta C, Hoffmann G, Applegate LA. Water-filtered infrared-A radiation (wIRA) is not implicated in cellular degeneration of human skin. GMS Ger Med Sci. 2007;5:Doc08. Online available from:
http://www.egms.de/pdf/gms/2007-5/000044.pdf (PDF) and http://www.egms.de/en/gms/2007-5/000044.shtml (shtml).
19. Hartel M, Hoffmann G, Wente MN, Martignoni ME, Büchler MW, Friess H. Randomized clinical trial of the influence of local water-filtered infrared A irradiation on wound healing after abdominal surgery. Br J Surg. 2006;93(8):952-60. DOI: 10.1002/bjs.5429
20. Vaupel P, Rzeznik J, Stofft E. Wassergefilterte Infrarot-A-Strahlung versus konventionelle Infrarotstrahlung: Temperaturprofile bei lokoregionaler Wärmetherapie [Water-filtered infrared-A radiation versus conventional infrared-A radiation: temperature profiles upon loco-regional thermotherapy]. Phys Rehab Kur Med. 1995;5:77-81. DOI: 10.1055/s-2008-1061959
21. Stofft E, Vaupel P. Wassergefilterte Infrarot-A-Strahlung versus Fango-Paraffin-Packung: Temperaturprofile bei lokoregionaler Wärmetherapie [Water-filtered infrared-A radiation versus fango-paraffin pack: temperature profiles upon loco-regional thermotherapy]. Phys Rehab Kur Med. 1996;6:7-11. DOI: 10.1055/s-2008-1061893

22. Vaupel P, Stofft E. Wassergefilterte Infrarot-A-Strahlung im Vergleich zu konventioneller Infrarotstrahlung oder Fango-Paraffin-Packungen: Temperaturprofile bei lokaler Wärmetherapie [Water-filtered infrared-A radiation in comparison to conventional infrared-A radiation or fango paraffin packages: temperature profiles in local thermal therapy]. In: Vaupel P, Krüger W, Hrsg. Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung
[Thermal therapy with water-filtered infrared-A radiation]. Grundlagen und Anwendungsmöglichkeiten [The fundamentals and applications]. 2. Aufl. Stuttgart: Hippokrates; 1995.
S. 135-47.
23. Mercer JB, Nielsen SP, Hoffmann G. Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography. GMS Ger Med Sci. 2008;6:Doc11. Online available from: http://www.egms.de/pdf/gms/2008-
6/000056.pdf (PDF) and http://www.egms.de/en/gms/2008-6/000056.shtml (shtml).
24. Mercer JB, de Weerd L. The effect of water-filtered infrared-A (wIRA) irradiation on skin temperature and skin blood flow as evaluated by infrared thermography and scanning laser Doppler imaging. Thermology Int. 2005;15(3):89-94.
25. Pascoe DD, Mercer JB, de Weerd L. Physiology of thermal signals. In: Bronzino JD, ed. Biomedical Engineering Handbook. 3rd edition. Boca Raton (Florida/USA): Tailor and Francis Group, CRC press; 2006. p. 21-1 – 21-20.
26. Hellige G, Becker G, Hahn G. Temperaturverteilung und Eindringtiefe wassergefilterter Infrarot-A-Strahlung [Temperature distribution and penetration depth of water-filtered infrared-A radiation]. In: Vaupel P, Krüger W, Hrsg. Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung [Thermal therapy with water-filtered infrared-A radiation]. Grundlagen und Anwendungsmöglichkeiten [The fundamentals and applications].
2. Aufl. Stuttgart: Hippokrates; 1995. S. 63-79.
27. Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358(9285):876-80. DOI: 10.1016/S0140-6736(01)06071-8
28. Plattner O, Akca O, Herbst F, Arkilic CF, Függer R, Barlan M, Kurz A, Hopf H, Werba A, Sessler DI. The influence of 2 surgical bandage systems on wound tissue oxygen tension. Arch Surg. 2000;135(7):818-22. DOI: 10.1001/archsurg.135.7.818
29. Kivisaari J, Vihersaari T, Renvall S, Niinikoski J. Energy metabolism of experimental wounds at various oxygen environments. Ann Surg. 1975;181:823-8. DOI:
10.1097/00000658-197506000-00011
30. Kühne HH, Ullmann U, Kühne FW. New aspects on the pathophysiology of wound infection and wound healing – the problem of lowered oxygen pressure in the tissue. Infection. 1985;13(2):52-6. DOI: 10.1007/BF01660413
31. Niinikoski J, Gottrup F, Hunt TK. The role of oxygen in wound repair. In: Janssen H, Rooman R, Robertson JIS, eds. Wound healing. Petersfield: Wrightson Biomedical Publishing; 1991.
p. 165-74.
32. Hoffmann G. Improvement of wound healing in chronic ulcers by hyperbaric oxygenation and by waterfiltered ultrared A induced localized hyperthermia. Adv Exp Med Biol. 1994;345:181-8.
33. Buslau M, Hoffmann G. Hyperbaric oxygenation in the treatment of skin diseases [review]. In: Fuchs J, Packer L, eds. Oxidative stress in dermatology. New York: Marcel Dekker; 1993.
p. 457-85.
34. Buslau M, Hoffmann G. Die hyperbare Oxygenation (HBO) – eine adjuvante Therapie akuter und chronischer Wundheilungsstörungen [Review] [Hyperbaric oxygenation – an adjuvant therapy of acute and chronic wound healing impairments]. Dermatol Monatsschr. 1993;179:39-54.

35. Hoffmann G, Buslau M. Treatment of skin diseases by hyperbaric oxygenation. In: Cramer FS, ed. In: Proceedings of the Eleventh International Congress on Hyperbaric Medicine. Flaggstaff, USA: Best Publishing Company; 1995. p. 20-1, 153-9.
36. Wright J. Hyperbaric oxygen therapy for wound healing. World Wide Wounds; 2001. Online available from:
http://www.worldwidewounds.com/2001/april/Wright/HyperbaricOxygen.html
37. Knighton DR, Silver IA, Hunt TK. Regulation of wound-healing angiogenesis – effect of oxygen gradients and inspired oxygen concentration. Surgery. 1981;90:262-70.
38. Jünger M, Hahn M, Klyscz T, Steins A. Role of microangiopathy in the development of venous leg ulcers. Basel: Karger; 1999.
p. 180-93. (Progr. Appl. Microc.; Vol. 23.).
39. Karu TI. Primary and secondary mechanisms of action of visible to near-IR radiation on cells [review]. J Photochem Photobiol B. 1999;49(1):1-17. DOI: 10.1016/S1011-1344(98)00219-X
40. Karu TI. Low-power laser effects. In: Waynant RW, editor. Lasers in medicine. Boca Raton: CRC Press; 2002. p. 171-209.
41. Danno K, Mori N, Toda K, Kobayashi T, Utani A. Near-infrared irradiation stimulates cutaneous wound repair: laboratory experiments on possible mechanisms. Photodermatol Photoimmunol Photomed. 2001;17(6):261-5.
42. Horwitz LR, Burke TJ, Carnegie D. Augmentation of wound healing using monochromatic infrared energy. Exploration of a new technology for wound management. Adv Wound Care.
1999;12(1):35-40.
43. Menezes S, Coulomb B, Lebreton C, Dubertret L. Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol.
1998;111(4):629-33. DOI: 10.1046/j.1523-1747.1998.00338.x
44. Frank S, Menezes S, Lebreton-De Coster C, Oster M, Dubertret L, Coulomb B. Infrared radiation induces the p53 signaling pathway: role in infrared prevention of ultraviolet B toxicity. Exp Dermatol. 2006;15(2):130-7. DOI: 10.1111/j.1600-0625.2005.00397.x
45. Frank S, Oliver L, Lebreton-De Coster C, Moreau C, Lecabellec MT, Michel L, Vallette FM, Dubertret L, Coulomb B. Infrared radiation affects the mitochondrial pathway of apoptosis in human fibroblasts. J Invest Dermatol. 2004;123(5):823-31. DOI: 10.1111/j.0022-202X.2004.23472.x
46. Danno K, Horio T, Imamura S. Infrared radiation suppresses ultraviolet B-induced sunburn-cell formation. Arch Dermatol Res. 1992;284(2):92-4. DOI: 10.1007/BF00373376
47. Applegate LA, Scaletta C, Panizzon R, Frenk E, Hohlfeld P, Schwarzkopf S. Induction of the putative protective protein ferritin by infrared radiation: implications in skin repair. Int J Mol Med. 2000;5(3):247-51.
48. Burri N, Gebbers N, Applegate LA. Chronic infrared-A radiation repair: Implications in cellular senescence and extracellular matrix. In: Pandalai SG, ed. Recent Research Developments in Photochemistry & Photobiology, vol. 7. Trivandrum: Transworld Research Network; 2004. p. 219-31.
49. Hoffmann G, Meffert H. Apparent contradiction between negative effects of UV radiation and positive effects of sun exposure. GMS Ger Med Sci. 2005;3:Doc01. Online available from:
http://www.egms.de/pdf/gms/2005-3/000019.pdf (PDF) and http://www.egms.de/en/gms/2005-3/000019.shtml (shtml).
50. Jung T, Höhn A, Piazena H, Grune T. Effects of water-filtered infrared A irradiation on human fibroblasts. Free Radic Biol Med. 2009 Oct 21. DOI: 10.1016/j.freeradbiomed.2009.10.036

51. Piazena H, Kelleher DK. Effects of infrared-A irradiation on skin: discrepancies in published data highlight the need for an exact consideration of physical and photobiological laws and appropriate experimental settings. Photochem Photobiol. 2009: accepted.
52. Hoffmann G. Wassergefiltertes Infrarot A (wIRA) in der Wundbehandlung: Interview; 3 Fragen an Prof. Dr. med. Gerd Hoffmann [Water-filtered infrared-A (wIRA) in the treatment of wounds: interview; 3 questions to Prof. Gerd Hoffmann, MD]. Heilberufe. 2009;61(7):14. Also available online from: http://publikationen.ub.uni-frankfurt.de/volltexte/2009/6802/[The online version includes an English and a German abstract].
53. Biland L, Barras J. Die wassergefilterte Infrarot-A-Hyperthermie zur Behandlung venöser Ulcera [Water-filtered infrared-A induced hyperthermia used as therapy of venous ulcers]. Hefte Wundbehand. 2001;5:41.
54. Haupenthal H. In vitro- und in vivo-Untersuchungen zur temperaturgesteuerten Arzneistoff-Liberation und Permeation [Thesis] [In vitro and in vivo investigations of temperature dependent drug liberation and permeation]. Mainz: Johannes Gutenberg-Universität; 1997.
55. Bankova L, Heinemann C, Fluhr JW, Hoffmann G, Elsner P. Improvement of penetration of a topical corticoid by waterfiltered infrared A (wIRA). In: 1st Joint Meeting 14th International Congress for Bioengineering and the Skin & 8th Congress of the International Society for Skin Imaging; 2003 May 21-24; Hamburg; 2003. P96.
56. Otberg N, Grone D, Meyer L, Schanzer S, Hoffmann G, Ackermann H, Sterry W, Lademann J. Water-filtered infrared-A (wIRA) can act as a penetration enhancer for topically applied substances. GMS Ger Med Sci. 2008;6:Doc08. Online available from:
http://www.egms.de/pdf/gms/2008-6/000053.pdf (PDF) and http://www.egms.de/en/gms/2008-6/000053.shtml (shtml).
57. Hoffmann G. Wassergefiltertes Infrarot A (wIRA) [Water-filtered infrared-A (wIRA)]. In: Kramer A, Assadian O, Hrsg. Wallhäußers Praxis der Sterilisation, Desinfektion, Antiseptik und Konservierung. Qualitätssicherung der Hygiene in Industrie, Pharmazie und Medizin. [Wallhäußer’s practice of sterilization, disinfection, antisepsis and conservation. Quality assurance of the hygiene in industry, pharmacy, and medicine]. Stuttgart: Thieme; 2008. S. 899-900. ISBN: 978-3-13-141121-1. Also available online from: http://publikationen.ub.uni-
frankfurt.de/volltexte/2009/6135/ [The online version includes an English and a German abstract].
58. Carter DR, ed. Electro-Optics Handbook [company publication]. Lancester, PA, USA: Burle Industries; c2008. Section 6, p. 61-
80. Online available from: http://www.burle.com/cgi-
bin/byteserver.pl/pdf/Electro_Optics.pdf
59. Valley SL, ed. Handbook of geophysics and space environments. Air Force Cambridge Research Laboratories, Office of Aerospace Research, U.S. Air Force; 1965. Also published: New York, N.Y.: McGraw-Hill Book Co.; 1965.

 

發佈留言